Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

The Research on Electrical Parking Brake System based on Frictional Model

2015-09-27
2015-01-2701
The control forms of the vehicle have transformed from hydraulic or mechanical control to electrical control owing to the increasing demand of automotive safety and soaring development of electronic technology. Compared with the traditional mechanical parking brake system, the electrical control of brake named Electrical Parking Brake (EPB) System presents a variety of advantages. What's more, it shares common actuators and realizes the communication between electrical control systems to advance the vehicle industry to intellectualization. With such superiority, the EPB System has aroused much interest. But the difficulty in building the simulation model lies in the description of friction in screw-nut system of which the nonlinear component causes the hysteresis. However, almost all models found in the literature before are the static friction model with the limit of description of dynamic features like pre-sliding frictional features and parameters variation.
Technical Paper

The Research on the Temperature Control Stability of Hydraulic Retarder Oil Based on Organic Rankine Cycle

2016-09-27
2016-01-8085
The hydraulic retarder is an auxiliary braking device generally equipped on commercial vehicles. Its oil temperature change influences the brake performance of hydraulic retarder. The Organic Rankine Cycle (ORC) is a good means to recover exhausted heat. Moreover, it can cool oil and stably control oil temperature with the help of heat absorption related with evaporation. Comprehensively considering the heat-producing characteristics of hydraulic retarder and the temperature control demand, the aimed boundary conditions are determined. Also the changing rules about the working medium flow rate are obtained. In this work, the heat-producing properties of hydraulic retarder under different conditions and the oil external circulating performance is firstly analyzed. By researching the system’s adaptation to the limiting conditions, the aimed temperature to control is prescribed.
Technical Paper

The Shock Absorber of Energy Recovery Using Electrorheological Fluid

2012-04-16
2012-01-0981
When vehicle traveling on the bumpy road or vehicle acceleration and deceleration, which will cause the body vibration of vehicle, at the same time, a large part of energy would be absorbed by the shock absorber transforms the mechanical energy into heat energy dissipated. In order to recycle the energy of vibration and keep the stability of running car, this paper provides the shock absorber of energy recovery that recycling the energy dissipated from the traditional absorber. The shock absorber includes rod and rodless chamber cavity, the two parts contain oil outlet and oil inlet, which connected to a bridge type loop of hydraulic to make pulsating oil pressure towards one direction, when the shock absorber vibration causes pulsating oil pressure, it drives hydraulic pump operation. Because the output shaft of the hydraulic pump fixedly attached to the input shaft of generator, so the generator produces electricity for recycling energy[1].
Technical Paper

Thermal Management Design and Simulation of Symmetric Air-Cooled System for Lithium Battery

2023-04-11
2023-01-0517
Good heat dissipation of Lithium battery can prevent the battery from shortening its life due to rapid aging or thermal runaway. In this paper, an air-cooled structure of 5 series and 3 parallel battery packs is designed, which combines the advantages of series and parallel air ducts and optimizes the heat dissipation effect and the space ratio of air ducts. First, the heat generation model of NCR18650PF lithium battery is established, and the heat generation rate and time under different discharge rates are calculated. Combined with the working conditions of the battery itself, the necessity of battery pack heat dissipation was found.
Technical Paper

Thermal Stability Research of Vehicle Exhaust Waste-Heat Recovery System with Intermediate Medium

2016-04-05
2016-01-0228
Vehicle exhaust waste-heat recovery with thermoelectric power generators can improve energy efficiency, as well as vehicle fuel economy. In the conventional structure, the hot-end of thermoelectric module is directly connected with the outer wall of the exhaust pipe, while the cold-end is connected with the water pipe’s outer wall of the vehicle engine cooling cycle. However, the variety of vehicle engine operating conditions leads to the instability of the hot-end temperature, which will reduce the generating efficiency of the thermoelectric modules and also shorten its service life. This research is on the basis of constructing a heat transfer oil circulation, and to study the action principles and implementation methods of it.
Technical Paper

Thermoelectric Module Temperature Stability Control for the Vehicle Engine Exhaust Heat Recovery

2015-04-14
2015-01-0350
The vehicle engine exhaust wastes heat. For the conventional scheme, the hot-end of the thermoelectric module is connected with the exhaust pipe, while the cold-end is cooled through the vehicle engine cooling cycle. The variation of vehicle engine operating conditions brings the instability of the hot-end temperature, which affects the power generation performance of thermoelectric materials and increases the damage risk to the thermoelectric materials caused by the high temperature. This research adopts the heat transfer oil circulation as the intermediate fluid to absorb the dynamic heat flux of the vehicle engine exhaust so as to release the heat steadily to the hot-end of the thermoelectric module. The thermal characteristics of the target diesel vehicle engine exhaust gas are evaluated based on the experimental data firstly.
Technical Paper

Vehicle Accelerator and Brake Pedal On-Off State Judgment by Using Speed Recognition

2021-04-16
2021-01-5038
The development of intelligent transportation improves road efficiency, reduces automobile energy consumption, and improves driving safety. The core of intelligent transportation is the two-way information interaction between vehicles and the road environment. At present, road environmental information can flow to the vehicle, while the vehicle’s information rarely flows to the outside world. The electronic throttle and electronic braking systems of some vehicles use sensors to get the state of the accelerator and brake pedal, which can be transmitted to the outside environment through technologies such as the Internet of Vehicles. But the Internet of Vehicles technology has not been widely used, and it relies on signal sources, which is a passive way of information acquisition. In this paper, an active identification method is proposed to get the vehicle pedal on-off state as well as the driver’s operation behavior through existing traffic facilities.
Technical Paper

Vehicle Braking System Calculation and Simulation Software Platform

2012-09-24
2012-01-1895
The brake performance is one of the most important performances in the automotive active safety, and it is the main measure of automotive active safety. Thus, to develop a platform for the braking system is quite significant. Based on the object-oriented technology, the platform for braking system is developed by making use of Visual C++ 6.0 development tool. By using the VC++ development tool and doing secondary development on other softwares, the software possesses powerful features, such as brake plan selection, performance calculation, parametric modeling, finite element analysis and kinematics simulation, etc. An initial brake system can be designed, calculated and analyzed all in one. The living instance shows that the platform has friendly user interfaces, powerful functions and it can improve the precision and efficiency of brake design. The platform has been of great applied value and can also positively promote the design automation of vehicle's braking system.
Technical Paper

Vehicle Feature Recognition Method Based on Image Semantic Segmentation

2022-03-29
2022-01-0144
In the process of truck overload and over-limit detection, it is necessary to detect the characteristics of the vehicle's size, type, and wheel number. In addition, in some vehicle vision-based load recognition systems, the vehicle load can be calculated by detecting the vibration frequency of specific parts of the vehicle or the change in the length of the suspension during the vehicle's forward process. Therefore, it is essential to quickly and accurately identify vehicle features through the camera. This paper proposes a vehicle feature recognition method based on image semantic segmentation and Python, which can identify the length, height, number of wheels and vibration frequency at specific parts of the vehicle based on the vehicle driving video captured by the roadside camera.
Technical Paper

Vehicle Trajectory Planning and Control Based on Bi-Level Model Predictive Control Algorithm

2024-04-09
2024-01-2561
Autonomous driving technology represents a significant direction for future transportation, encompassing four key aspects: perception, planning, decision-making, and control. Among these aspects, vehicle trajectory planning and control are crucial for achieving safe and efficient autonomous driving. This paper introduces a Combined Model Predictive Control algorithm aimed at ensuring collision-free and comfortable driving while adhering to appropriate lane trajectories. Due to the algorithm is divided into two layers, it is also called the Bi-Level Model Predictive Control algorithm (BLMPC). The BLMPC algorithm comprises two layers. The upper-level trajectory planner, to reduce planning time, employs a point mass model that neglects the vehicle's physical dimensions as the planning model. Additionally, obstacle avoidance cost functions are integrated into the planning process.
Technical Paper

Vehicle Trajectory Prediction in Highway Merging Area Using Interactive Graph Attention Mechanism

2023-12-31
2023-01-7110
Accurately predicting the future trajectories of surrounding traffic agents is important for ensuring the safety of autonomous vehicles. To address the scenario of frequent interactions among traffic agents in the highway merging area, this paper proposes a trajectory prediction method based on interactive graph attention mechanism. Our approach integrates an interactive graph model to capture the complex interactions among traffic agents as well as the interactions between these agents and the contextual map of the highway merging area. By leveraging this interactive graph model, we establish an agent-agent interactive graph and an agent-map interactive graph. Moreover, we employ Graph Attention Network (GAT) to extract spatial interactions among trajectories, enhancing our predictions. To capture temporal dependencies within trajectories, we employ a Transformer-based multi-head self-attention mechanism.
Technical Paper

Vehicle-GIS Assistant Driving System for Real-time Safety Speed Warning on Mountain Roads

2017-03-28
2017-01-1400
Downhill mountain roads are the accident prone sections because of their complexity and variety. Drivers rely more on driving experience and it is very easy to cause traffic accidents due to the negligence or the judgment failure. Traditional active safety systems, such as ABS, having subjecting to the driver's visual feedback, can’t fully guarantee the downhill driving safety in complex terrain environments. To enhance the safety of vehicles in the downhill, this study combines the characteristics of vehicle dynamics and the geographic information. Thus, through which the drivers could obtain the safety speed specified for his/her vehicle in the given downhill terrains and operate in advance to reduce traffic accidents due to driver's judgment failure and avoid the brake overheating and enhance the safety of vehicles in the downhill.
X